Any revealing of identification, appeal to evaluator and for equations written eg. 42+8 = 50, will be treated as malpractice. Important Note: I. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

First Semester MCA Degree Examination, Dec.2013/Jan. 2014 **Discrete Mathematical Structures**

Time: 3 hrs. Max. Marks: 100

Note: Answer any FIVE full questions.

- a. Prove that $[(p \leftrightarrow q) \land (q \leftrightarrow r) \land (r \leftrightarrow p)] \leftrightarrow [(p \rightarrow q) \land (q \rightarrow r) \land (r \rightarrow p)]$ is a tautology. (07 Marks)
 - b. Negate each of the following and simplify the resetting statement:

ii) $(p \lor q) \land \neg (\neg p \land q)$ iii) $q \rightarrow \neg [(p \lor q) \land r]$.

- c. Write the following argument in symbolic form and establish the validity (07 Marks) If Rochelle gets supervisor's position and works hard, then she gets a raise, if she gets the raise, then she will buy a new car. She has not purchased a new car. Therefore either Rochelle did not get the supervisor's position or she did not work hard.
- For the universe of all integers, let p(x), q(x), r(x), s(x), t(x) be the following open 2
 - i) p(x): x > 0 ii) q(x): x is even iii) r(x): x is perfect square iv) s(x): x is divided by 4

Write the following statements in symbolic form and determine whether they are true or false.

- i) If x is even then x is not divisible by 5
- ii) No even integer is divisible by 5
- iii) If x is even and perfect square, then x is divisible by 4
- iv) If x is perfect square then it is positive.
- b. Establish the validity of the following argument with reasons

$$\forall x [p(x) \to q(x) \land r(x)]$$

$$\frac{\forall x[p(x) \land s(x)]}{\therefore \forall x[r(x) \land s(x)]}.$$

c. Prove that for every integer n, n² even if and only if n is even.

(06 Marks)

- (06 Marks)
- d. Identify the bound variables and free variables in each of the following statements:
 - i) $\forall y \exists z [\cos(x+y) = \sin(z-x)]$

ii)
$$\exists x \exists y [x^2 - y^2 = z].$$

(02 Marks)

- a. Prove that two sets S and T are disjoint if and only if $S \cup T = S\Delta T$. 3 b. Find $\overline{A\Delta B}$, for sets A and B. (06 Marks)

(06 Marks)

- How many permutations of the 26 letters of the alphabet contain
 - i) either the pattern "OUT" or pattern "DIG"

ii) neither the pattern "MAN" nor the pattern "ANT".

- In a coffee shop there six kinds of muffins eight kinds of sandwiches and five beverages (two hot and three cold). Find the number of ways in which a person can have either a muffin and a hot beverage or a sandwich and cold beverage? (03 Marks)
- a. Prove that for all $n \in \mathbb{Z}^f$, $n \ge 3 \Rightarrow 2^n \le n!$.

b. Define Fibonacci numbers recursively. If F_i , $i = 0, 1, 2 \dots$ are Fibonacci numbers, prove that $\sum_{n=1}^{n} F_n^2 = F_n \times F_{n+1}, \forall n \in 2^+$. (06 Marks)

- c. Find the greatest common divisor of 1369 and 2597. Express it as linear combination of
- d. A bank pays 6% (annual) interest on savings, compounding the interest monthly. If one deposits Rs. 1000 on the first day of May then how much will this deposit be worth a year (04 Marks) l of 2

13MCA12

- a. For each of the following functions, determine whether it is one-to- one and into. If yes, find 5 inverse of it.
 - i) $f: Z \rightarrow Z$, f(x) = 2x + 1
 - ii) $f: Q \rightarrow Q$, f(x) = 2x + 1
 - iii) $f: R \rightarrow R$, $f(x) = x^2 + x$.

(06 Marks)

- b. Let m, n be positive integers with $1 < n \le m$. Then prove that S(m + 1, n) = S(m, n 1) + mnS(m, n), where S(m, n) is the stirling number of 2^{nd} kind.
- c. Let A = B = R, determine $\pi_A(D)$ and $\pi_B(D)$ for the following set, $D \subseteq A \times B \cdot D = \{(x, y) \mid x = y^2\}$.
- Let ABC be equilateral with AB = 1 cm. Show that if we select to points in the interior of the triangle, there must be at least two points whose distance apart is less than 1/3 cm.

(05 Marks)

- a. On the set A of all lines in R^2 , define the relation R for two lines ℓ_1 , ℓ_2 by ℓ_1 R ℓ_2 if ℓ_1 is 6 perpendicular to ℓ_2 . Is R reflexive, symmetric, antisymmetric or transitive? (04 Marks)
 - b. For $A = \{a, b, c, d, e\}$, the Hasse diagram for the poset (A, R) is shown in Fig. Q6(b).
 - i) Determine the relation matrix for R
 - ii) construct the digraph associated with R
 - iii) topologically sort the poset (A, R).

(06 Marks)

- Fig. Q6(d)
- Let R be an equivalence relation on A. Then prove that
 - i) $x \in [x]$ ii) $x \in [x]$ iii) $x \in [x]$ iii) [x] = [y] or $[x] \cap [y] = \phi$.
- d. Define a lattice. Consider the poset (A, R) whose Hasse diagram is given in Fig. Q6(d). Is it (04 Marks) a lattice? Justify.
- a. If G has 25 edges and \overline{G} has 20 edges, how many vertices does G have? (04 Marks)
 - b. If a graph has an Eulerian circuit, then there are no vertices in G with odd degree. (06 Marks)
 - Prove that two graphs G and H are isomorphic if and only if \overline{G} and \overline{H} are isomorphic.

(05 Marks)

(06 Marks)

- Define chromatic number. Prove that chromatic number of any bipartite graph with atleast (05 Marks) two vertices is 2.
- Find the shortest path from a to e in the following graph (Fig Q8(a)), using Dijkstra's 8 (06 Marks) algorithm.

